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1 Introduction

Machine Translation (MT) is a NLP task that translates from one language to another, where a semantic under-
standing of human language is involved. Instead of conventional methods like Statistical Machine Translation
(SMT), we focus on Neural Machine Translation (NMT) emerged under the development of deep learning, which
relies little on hand-crafted features and has deeper semantic meanings.

2 Related work

Recent techniques have brought about the tendency of performing MT using deep Neural Networks, since it
have achieved promising results. Recurrent Neural Network (RNN)-based NMT [1] was first proposed since
human languages have auto-regressive properties, while it has a drawback of deteriorating performance for long
sentences due to gradient vanishing. The problem can be alleviated by Long short-term memory (LSTM) or
Gated Recurrent Unit (GRU) where gates are served to lead a longer memory. Some also tried Convolutional
Neural Network (CNN)-based methods to increase the training speed, since Convolutions are allowed to be
computed in parallel. While the intrinsic characteristic of Convolutions indicates a local pattern, and global
dependencies can only be seen in high-level layers, which prevents a very good result. The above mentioned
approaches are later combined with the attention mechanism [2] to give a flexible length of representation
(rather than compress the whole sentence into a fix-length vector). Also, attention mechanism can extract
global dependencies and be benefit from parallel computation. Besides, the original mode of RNN looks from
left to right (i.e. unidirectional). This can be problematic especially for tasks like reading comprehension
which require information from both before and after contents. As such, bidirectional RNN [3] was proposed,
where a representation on the other direction providing extra information is concatenated. This technique is
proved to largely promote the result. However, with the seminal work of Transformer [4], which dispenses
of the aforementioned RNN/CNN structure and relies only on the attention mechanism, has brought NLP
into a new world. It is also shown to be successful in MT tasks. By adopting the encoder of Transformer,
BERT opened up the mode for pre-training and fine-tuning. While for translation tasks, only monolingual
pre-training may not be able to fully exploit its potential, thus multilingual models can be considered. For
example, mBart [10] is the first model pre-trained on multilingual NLG tasks, which achieves state-of-the-art
result on translation tasks. Since NMT is a generation task, the decoding process is of great importance. It
is proved that the reversed direction in bidirectional decoding can be served as a complement to improve the
results. Non-autoregressive NMT is also proposed to lower the latency in the inference stage. Apart from
that, some also do prior knowledge integration including linguistic knowledge, lexical knowledge and syntactic
structure, which requires implementing dependency parsing.

3 Overall Modeling

Formulation

MT is a sequence-to-sequence (seq2seq) task [1], with both input and output are sequence. Its objective is to
find the most probable sequence given the input. Different from the Classification tasks, its modeling serves an

1



Encoder-Decoder structure, which gives the representation for the source tokens and the generation for target
tokens respectively. In general, seq2seq tasks can be modeled as Conditional Language Models, which is given
as

y∗ = argmax
y

p(y|x,θ) (1)

= argmax
yt

n∏
t=1

p(yt|y<t,x) (2)

where x and y are source tokens and target tokens respectively; yt is the target token at the step, y<t are target
tokens at previous steps; n is the length of the sentence.

Encoder-Decoder structure

Since MT is a generation task, it needs both an encoder and a decoder into its modeling structure. The source
tokens are input into the encoder, which encode the semantic meaning of the words; And the target tokens
generated by the previous steps are input into the decoder, which did the reverse work of converting the hidden
representations into real words; The encoder and the decoder are connected. The principle of the Encoder-
Decoder structure lies in that source language and target language can be mapped into a same semantic space
[6].

Training

Since the determination of target tokens is essentially a classification process, the Cross-Entropy Loss is applied
here. It actually shares the same objective function as maximum likelihood estimation (MLE), which is

L(θ) =

n∑
t=1

log p(yt|y<t,x;θ) (3)

θ̂ = argmax
θ

L(θ) (4)

The parameters can be updated following the rules of stochastic gradient descent by using mini batches

θ ← θ − α∇θL(θ) (5)

Inference

Due to the intractably large search space, it is only practical to find the local optimum in the generation process.
The following are two commonly used search strategies.

1) Greedy search Greedy search picks the most probable word at each step. While the best solution at one
step does not guarantee a best translation for the whole sentence. Thus the performance would degrade into a
suboptimal one.

2) Beam search In contrast, beam search keep track of the top n best solutions. It would generally give a
better result than greedy search, since it offers chances of looking back. We can tune the beam size to achieve
a balance between computational efficiency and accuracy.

A problem of these methods is that it prefers shorter sentences, since the negative log likelihood (i.e. our
objective function) tends to be larger when involving more words. This can be solved by length normalization
and coverage penalty [6].

4 Proposed methods

Transformer

Transformer specifies a encoder-decoder structure, and relies only on the attention mechanism. In the encoder,
the stacked self-attention makes source tokens share information and have a better understanding of each other
in the context. The cross attention connects encoder and decoder for target token at the step to look at source
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representations. And masked self-attention in the decoder links target token at the step to previous target
tokens. The attention can be computed as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

where Q is the query matrix, K is target matrix, and v is the value of the target words, from which model
extracts the correlation between the query words and the target words.

Multi-head attention is applied, with each head independently focus on different features, which appear to
have some connections with syntactic and semantic structure of the sentences.

As for the input of the model, it combines token embedding with positional embedding. Token embedding
usually uses a pre-trained model to predict each token with its context; Positional embedding is used to learn
the order of the sequence. A sinusoid positional encoding is given by

PE(pos,2i) = sin(pos/100002i/dmodel) (7)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (8)

There are also other tricks used in Transformer, like residual connection and normalization.

Transfer learning

Transfer learning focuses on transferring the knowledge learned from one task to a different but related problem
[19]. The concept of transfer learning has been widely used in the NLP field, among which the pre-training and
fine-tuning paradigm have achieved prominent results. For machine translation tasks, we also hope to try this
paradigm to see if there will be some improvements. In this project, we specify five novel transformer-based
models for trying the pre-training and fine-tuning mode.

T5

T5 [14] is a highly pre-trained and unified model. It considers all NLP tasks as text-to-text problems and
pre-trains them uniformly so that all downstream tasks can be performed on a single model. It is based on
transformer but removes the bias of normalization layer and not using fixed position encoding but the relative
position between query and key instead (i.e. the offset value).

Transformer-align

Transformer-align [15] supposes that the past fixed-length vectors encoded in encoder-decoder structure reduces
the performance of this structure, such as ability to correspond to long sentences in the evaluation. Therefore,
it allows the model to improve the performance by soft-searching for parts of the original sentence that are
relevant to the target sentence. The model encodes the input sentences to a suitable length each time and then
selects the most relevant subset of them for decoding and translation.

We also tried other pre-trained models: bert2bert [16], a transformer-based model with both encoder and
decoder as pre-trained bert; FSMT [17], a model using byte pair encoding; Deep-shallow [18], a structure that
improves the speed and performance of an autoregressive model by deepening the number of layers of the
encoder.

5 Experiment

Dataset

We use dataset Multi30k provided by Pytorch, which involves bilingual text of German and English. It is
consist of 30k short sentences. We select German as our source language, and English as our target language
(i.e. translate from German to English). The dataset is divided into training and validation sets, which contains
29,000 and 1,000 German-English sentence pairs respectively.
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Baseline model

We use the classic Transformer as our baseline model.

Pre-trained models

We compare five pre-trained models, namely T5, Transformer-Align, Bert-to-Bert, FSMT and Deep-Shallow.
These models have different model structures and pre-training tasks. We use their default tokenizers to process
incoming and outgoing sentences.

Training strategy and parameters

The baseline model is trained directly using our dataset. We stop training when the loss on the validation set
have no further decrease (i.e. converge);

The pre-trained models are fine-tuned by our dataset. The pre-trained weights are only used as an initial-
ization, and we don’t freeze any part of the model, as we want the model to learn the features of the our dataset
better. These five models are only trained with the same number of epochs as the baseline case, even if they
have not converged on the validation set at the stage.

Training parameters are set to be the same for all the cases. We specify Cross Entropy Loss as the loss
function and AdamW as the optimizer, which gives an adaptive learning rate.

Evaluation

We use SacreBleu to evaluate the translation performance of the model. SacreBLEU provides hassle-free
computation of shareable, comparable, and reproducible BLEU scores. Comparability is a very important
feature relative to BLEU, since each model uses a different tokenizer maybe with subtle changes. We hope that
our translation performance can be uniformly compared across multiple tokenizers.

6 Results and Discussions

We evaluate the loss at each epoch on both training set and validation set, and Bleu score on validation set,
and make comparisons between the baseline and other proposed models towards the above metrics. Plots of
the loss function and the Bleu score are demonstrated in Fig.1 and Fig.2 respectively.

For the training loss in Fig.1a, it can be found that the loss value decreases with epoches and all the three
models achieve a relatively low loss in the end. While the pre-trained models initially have a relatively low loss
value. And it should be noted that the pre-trained models only train the same number of epochs as the baseline
and are not necessarily converged. If continue training, they have the potential of getting a better result.

And for the validation loss in Fig.1b, the loss of baseline is much higher than that of the pre-trained model.
The performance on the validation set indicates the generalization ability. And it is clear that the generalization

(a) loss trend for training set (b) loss trend for validation set

Figure 1: The prediction loss of the model decreases successfully as the number of epochs increases. Comparing with
the baseline, the pre-trained models are obviously performance better.
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(a) Bleu score trend (b) Final Bleu score comparison

Figure 2: Comparison of Bleu score at different epochs and between different models.

Table 1: Examples of translation using different models for 3 sentences in Multi30k

Methods Translated Sentences

Labels
A group of men are loading cotton onto a truck.
A man sleeping in a green room on a couch.
A boy wearing headphones sits on a woman’s shoulders.

Baseline
A group of men loading pool into a truck.
A man is sleeping on a couch in a green room.
A boy with headphones sitting on his shoulders while sitting on a woman.

Transformer-Align
A group of men load cotton onto a truck.
A man is sleeping on a couch in a green room.
A boy with headphones is sitting on a woman’s shoulders.

T5
A group of men load cotton on a truck.
A man sleeps in a green room on a sofa.
A boy with headphones sits on a woman’s shoulders.

Bert-to-Bert
A group of manners ladt cotton on a truck.
A sleep in a green room on a sofa.
A young person with headphones sits on the shoulders of a frau.

FSMT
A group of men load cotton onto a truck.
A man sleeps on a sofa in a green room.
A boy with headphones sits on a woman’s shoulders.

Deep-Shallow
A group of men loads cotton on a truck.
A man sleeps in a green room on a sofa.
A boy with headphones sits on a woman’s shoulders.

ability of the baseline is not as good as that of the pre-trained model. The reason may lie in that the pre-trained
models have prior knowledge, while the baseline is only trained on our dataset, thus having a risk of overfitting.

Fig.2a shows the Bleu score changing with the number of epoches. The scores of pre-trained models always
exceed that of the baseline, especially for Transformer-Align, indicating that pre-trained models have a better
translation performance. Also looking at the final Bleu of the baseline and five pre-trained models shown in
Fig.2b, we can intuitively see that the paradigm of pre-training and fine-tuning can generally achieve better
results in translation tasks compared to the baseline that does not apply a pre-training mode.

To sum up, the advantages of the pre-trained model over the baseline lie in two aspects. First, pre-trained
models can start with lower losses and achieve lower final losses. Second, pre-trained models have a better
generalization ability. For the translation task, the pre-trained model can not only promote the translation
performance, but also reduce the work in the training phase to a certain extent.

In order to more intuitively feel the translation capability, we give examples of translation of three German
sentences using different models. The result is shown in Table 1, and the true English label is given.

Attention visualization We also give visualization of attention weights for the encoder-decoder attention.
Weights of different heads in the last layer are shown in Fig.3. Although different heads function on different
aspects, we found that as the learning proceeds, they all learned the alignment of words with the same meaning
between languages to some degree. And this effect is the most significant for Head 0.
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Figure 3: Visualize the cross attention weight of different heads in the last layer of the transformer-align model.

7 Future work

Due to time and hardware constraints, we did not complete all of the expected experiments. So far, the
structure of the pre-trained models we have used is basically a sequence to sequence form, and the pre-training
tasks contain generation tasks. We have also tried other pre-trained models and pre-training tasks, but we have
not fully completed these experiments. We document our unfinished and hoped-for experiments here.

Pre-training tasks. If the pre-trained model itself contains a generation task, it even contains a translation
task itself. In this case, our experiments have verified that pre-trained models can achieve a good performance
on downstream tasks. But we also want to explore the effect of pre-trained models that only use nature language
understanding (NLU) tasks in the pre-training phase, such as Roberta, XLMR.

Pre-trained models. Pre-trained models with sequence to sequence structure are undoubtedly very suitable
for machine translation tasks, which is also the structure we use in our experiments. We also hope to explore the
performance of pre-trained models of other structures on downstream tasks (e.g. only encoder, only decoder),
or what kind of performance will be generated when the depths of encoder and decoder are inconsistent.
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