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(a) Original (b) Seam carving (c) Seam carving (with seams) (d) Warping (e) Warping (with mesh)

Fig. 1. Demonstration of image resizing by different methods. The content-aware image resizing methods can keep the the aspect ratios of prominent
objects similar to the original image.

1 PROJECT TITLE
Content-Aware Image Resizing Using Optimization

2 PROJECT DESCRIPTION
There are always needs to adapt images to different sizes of display
in daily lives. Simple uniform resizing may be undesired since it
significantly changes aspect ratio and unavoidably loses informa-
tion, and there are cases where interested objects are on the edges.
Generally speaking, it is better to perform resizing while taking its
content into consideration. Recent techniques formed either dis-
crete or continuous framework towards the problem, namely Seam
Carving [Avidan and Shamir 2007] and Image Warping respectively,
with the objective to preserve important regions while minimize
distortions [Asheghi et al. 2022]. Fig.3 demonstrates the resizing
process by different methods.

3 PROPOSED APPROACH

3.1 Genetic Seam Carving
Seam carving. We first try the discrete formulation. With the semi-
nal work of Avidan and Shamir [Avidan and Shamir 2007], where
connected paths of pixels across an image are proposed to be re-
moved to minimize distortions, as is shown in 4a. For an image of
size𝑚 × 𝑛, a vertical seam can be defined as

sv = {(𝑖, 𝑗) | 𝑗 = 𝛼 (𝑖)}𝑚𝑖=1 (1)
s.t. |𝛼 (𝑖) − 𝛼 (𝑖 + 1) | ≤ 1 ∀𝑖

where 𝛼 (𝑖) is the mapping from row index to column index. And a
horizontal seam can be defined the same way.
The optimal seam should be in the lowest energy, that is

sv∗ = argmin
sv

𝐸 (sv) = argmin
𝑖, 𝑗

𝑚∑︁
𝑖

𝑒 (𝑖, 𝑗) (2)

where 𝐸 (s) is the total energy of the seam.
The path can be computed by an exhaustive algorithm since it
searches by rows iteratively and keep the energy in each step to be

the slowest. This can be given by

𝑀 (𝑖, 𝑗) = 𝑒 (𝑖, 𝑗) +𝑚𝑖𝑛


𝑀 (𝑖 + 1, 𝑗 − 1)
𝑀 (𝑖 + 1, 𝑗)
𝑀 (𝑖 + 1, 𝑗 + 1)

 (3)

where𝑀 (𝑖, 𝑗) is the cumulative minimum energy at the pixel (𝑖, 𝑗).
By substituting this, the optimal vertical seam can be formulated as

sv∗ = argmin𝑀 (1, 𝑗)𝑛𝑗=1 (4)

Optimization. Dynamic programming is a standard way to solve the
subproblems above [Avidan and Shamir 2007]. And there are also
proposals to apply genetic algorithms (GAs) [Oliveira et al. 2015;
Oliveira and Neto 2015]. GA [Whitley 1994] is a population-based
meta-heuristic algorithm, where solutions are generated iteratively
to approximate the optimum based on the fitness. Since GAs are
generally used for solving discrete problems and is good at finding
a nearly global optimum for problems with large search space, we
implement it here.

Genetic representation. Following the representation in [Oliveira
et al. 2015], a seam is defined as an individual, each with a single
chromosome composed by genes. Mathematically, it is given by

𝑔𝑖 ∈
{
[1, 𝑛], if i=p;
[−1, 1], otherwise.

(5)

where 𝑝 is the pivot point indicating the seam construction starting
point. Its value represents the absolute coordinate in the image,
while others are relative values of the random walk. The transfor-
mation of an individual into a seam is given by converting its gene
values into coordinates

𝛼 (𝑖) =


𝑔𝑖 , if i=p;
𝑔𝑖 + 𝛼 (𝑖 − 1), if i>p;
𝑔𝑖 + 𝛼 (𝑖 + 1), if i<p.

(6)

Genetic operators. We do selection and variations following the
GAs based on the above representation. Offsprings are reproduced
through variations including crossover and mutation. We do sin-
gle point crossover here, where parents’ genes are exchanged and
combined. To avoid the undesired case of pivot being located in
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the region of interest, we follow the crossover operator described
in [Oliveira and Neto 2015] to give a flexible pivot. This is done
by encoding the pivot value into a ternary one and perform again
crossover between two of them. In this way, when converting back
to integer values, the location of the pivots are changed. And select
certain numbers of genes randomly to have a mutation.

Fitness function. Individuals selection is performed by a fitness func-
tion, which is based on inversed energy. We apply elitism for each
generation to keep a non-degenerate solution. Different choices of
energy functions are discussed in 3.4.
This part of the work is carried out based on [Lavender 2019]

3.2 Image Warping
There are many warping-based methods that have achieved good
results in the image retarget task [Liu and Gleicher 2005; Niu et al.
2012; Ren et al. 2009; Wang et al. 2008]. We implemented one of the
methods based on mesh warping referring to [Wang et al. 2008].
In mesh warping based methods, a mesh M is created to split the
input image into small quad faces F. Quad faces consist of vertices
V and edges E, where V = [𝒗𝑇0 , 𝒗

𝑇
1 , · · · , 𝒗

𝑇
𝑁
] and 𝒗𝑖 ∈ R2 donates

the vertex positions. The goal in these methods is to find a optimal
vertex positions V∗ to warp the image in order to preserve the im-
portant quads as much as possible and allow the distortion of the
unimportant quads. The optimization process considers the distor-
tion of quad shapes and the bending of the vertical or horizontal
lines.

The distortion of shapes. The shape distortion of a quad face with
respect to vertex positions can be measured by:

𝐽
(𝑓 )
𝑠

(
V(𝑓 )

)
=

∑︁
{𝑖, 𝑗 }∈E(𝑓 )

(𝒗𝑖 − 𝒗 𝑗
)
− 𝑠𝑓

(
𝒗 (0)
𝑖

− 𝒗 (0)
𝑗

)2 . (7)

where V(𝑓 ) and E(𝑓 ) are the vertices and edges of 𝑓 , 𝒗 (0)
𝑖

and 𝒗 (0)
𝑗

are the initial positions of the vertices, 𝑠𝑓 is the desired scale factor
for the face 𝑓 .
𝑠𝑓 is completely defined by 𝒗𝑖 , 𝒗

(0)
𝑖

. We can obtain optimal scale fac-

tor 𝑠∗
𝑓
by differentiating 𝐽

(𝑓 )
𝑠

(
𝑠𝑓 ;V(𝑓 ),∗

)
and making it zero. Thus,

the optimal scale factor 𝑠∗
𝑓
can be calculated as:

𝑠∗
𝑓
=

∑
{𝑖, 𝑗 }∈E(𝑓 )

(
𝒗 (0)
𝑖

− 𝒗 (0)
𝑗

)𝑇 (
𝒗∗
𝑖
− 𝒗∗

𝑗

)
∑

{𝑖, 𝑗 }∈E(𝑓 )

𝒗 (0)𝑖
− 𝒗 (0)

𝑗

2 . (8)

The bending of lines. Similar to Eq. (7), the bending of lines of a quad
face with respect to vertex positions can be measured by:

𝐽
(𝑓 )
𝑙

(
V(𝑓 )

)
=

∑︁
{𝑖, 𝑗 }∈E(𝑓 )

(𝒗𝑖 − 𝒗 𝑗
)
− 𝑙𝑖 𝑗

(
𝒗 (0)
𝑖

− 𝒗 (0)
𝑗

)2 . (9)

where 𝑙𝑖 𝑗 is the length ratio of the edges and the optimal length
ratio can be calculated by:

𝑙∗𝑖 𝑗 =

𝒗∗𝑖 − 𝒗∗
𝑗

𝒗 (0)𝑖
− 𝒗 (0)

𝑗

 . (10)

Objective function. 𝐽𝑠 and 𝐽𝑙 are combined to obtain the objective
function:

𝐽 (V) =
∑︁
𝑓 ∈F

𝑤 (𝑓 )
(
𝐽
(𝑓 )
𝑠

(
V(𝑓 )

)
+ _𝐽

(𝑓 )
𝑙

(
V(𝑓 )

))
. (11)

where𝑤 (𝑓 ) are the weights of face 𝑓 , which can be calculated from
the energy map of the image. Different from [Wang et al. 2008], we
introduced _ to control the effect of 𝐽𝑙 , and𝑤 (𝑓 ) is not only used to
control the weights of 𝐽𝑠 terms, but also used to control the weights
of 𝐽𝑙 terms.
To ensure that the vertices of the border are not outside the image,
the following constraint is used:

𝒗𝑖,𝑦 =

{
0, 𝒗𝑖 is on the top boundary
ℎtarget, 𝒗𝑖 is on the bottom boundary

, (12)

𝒗𝑖,𝑥 =

{
0, 𝒗𝑖 is on the left boundary
𝑤target, 𝒗𝑖 is on the right boundary

. (13)

where ℎtarget and𝑤target are the target height and width.

Optimization. By minimizing the objective function Eq. (11), we
can obtain the optimal vertex positions. During the optimization
calculation, 𝑠𝑓 , 𝑙𝑖 𝑗 and the initial vertex positions 𝒗 (0)

𝑖
are fixed,

the problem is reduced to a series of linear problems. Two sparse
matrix 𝐴𝑥 , 𝐴𝑦 ∈ R𝑁×𝑁 are introduced to represent the coefficients
of 𝒗𝑖 ’s, and two vectors 𝒃𝑥 , 𝒃𝑦 ∈ R𝑁 are introduced to represent
the constant terms, where 𝑁 is the number of vertices. By solving
𝐴𝑥𝒗𝑥 = 𝒃𝑥 and𝐴𝑦𝒗𝑦 = 𝒃𝑦 , we can find the optimal vertex positions
V∗ for the current 𝑠𝑓 and 𝑙𝑖 𝑗 .
As we cannot the optimal 𝑠𝑓 , 𝑙𝑖 𝑗 initially, we need an initial guess for
of the vertex positions V(1) . We simply scaled the image to the target
size, using its vertex positions as an initial guess to calculate 𝑠 (1)

𝑓
, 𝑙
(1)
𝑖 𝑗

.

And use 𝑠 (1)
𝑓

, 𝑙
(1)
𝑖 𝑗

to compute a better vertex position V(2) . Then,

repeat this process over and over again. Since V(𝑡 ) will eventually
converge, we can find the optimal V∗ iteratively.

3.3 Linear Programming
Since seam carving is setting to find solutions greedily, which would
generally be suboptimal. In this section we consider having an
attempt to remove all seams at a time to gain a global optimum.
A different formulation is presented here as a binary optimization
problem by pixel selection.

Objective function. The objective is to find an optimal indication
matrix 𝑋 for selecting pixels with the lowest total energy to guide
the resizing process. Constraints are imposed to ensure certain
number of pixels selected per row and to restrict the pixels to be
consecutive (which is similar to the definition of seam).
Consider the vertical seam case, the objective function is given by
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argmin
𝑋

∥𝐸 ⊙ 𝑋 ∥1∑︁
𝑗

𝑥𝑖 𝑗 = 𝑁,∑︁
𝑗 ′∈{ 𝑗−1, 𝑗, 𝑗+1}

𝑥𝑖−1, 𝑗 ′ ≥ 𝑥𝑖 𝑗 ,∑︁
𝑗 ′∈{ 𝑗−1, 𝑗, 𝑗+1}

𝑥𝑖+1, 𝑗 ′ ≥ 𝑥𝑖 𝑗 .

(14)

where 𝐸 ∈ R𝐻×𝑊
+ is the energy map for the input image which

can be obtained using the energy function, and 𝑋 ∈ {0, 1}𝐻×𝑊

is a binary matrix, with its elements 𝑥𝑖 𝑗 indicating whether the
corresponding pixel is selected. ⊙ donates element-wise product,
| | · | |1 denotes the L1 norm.

Optimization. Since the whole system is linear, we can use linear
programming to solve the problem.
In addition to using binary variables 𝑥𝑖 𝑗 ∈ {0, 1}. We also tried the
representation of 𝑥𝑖 𝑗 as a continuous variable, where 0 ≤ 𝑥𝑖 𝑗 ≤ 1.
In the case of continuous variables, 𝑥𝑖 𝑗 can be considered as the
probability when the pixel in row 𝑖 and column 𝑗 is selected. We use
the same objective function and constraints as in the binary case,
with the difference that in the final decision of pixel selection, the
𝑁 pixels with the highest probability in each row are selected.

3.4 Energy Functions
Energy describes the significance of pixels in the image. It is said
to have a great impact on the results of both proposed methods,
since removal or deformation in regions of low energy would result
in minimal visual impact. As such, we try out several recognized
energy functions and compare their effects on the result.
Rubinstein et al. [Rubinstein et al. 2008] adopts a forward energy
which considers the effect on the retargeted image energy to re-
place the original backward energy. It is shown to produces less
discontinuities on the results, so we use it as one of the energy func-
tions. Besides, inspired by the choice in [Wang et al. 2008] where a
combination of image gradient and saliency map [Itti et al. 1998] is
specified to detect both structural significant and attractive objects,
and overcome the limitations of either of them, we apply energy
functions including gradient magnitudes, forward energy, saliency
and their combinations. Examples of energy maps is shown in Fig. 2.

4 RESULTS AND DISCUSSIONS
We first have an overall comparison of the results given by genetic
seam carving and warping. Subsequently we give some detailed
description and analysis for each method individually.

4.1 Overall Comparison
We perform comparisons in terms of visual effects and executing
time by reducing 20% of the height and 25% of the width. For the
seam carving approach, we set 30 generations and keep a constant
population size of 10. The ratio of keeping parents for the next
generation is set to be 0.2; For the warping-based approach, the
importance weight _ is set to be 10. The determination of part
of these hyperparameters is discussed in the following chapters

(a) Input (b) Forward

(c) Saliency (d) 0.5*forward+0.5*saliency

Fig. 2. Different energy maps.

correspondently. In addition, we found that the combination of
forward energy benefits the result most, thus we adopt it here and
for the following sessions. The comparison results are shown in
Fig. 3.

Original Seam-carving Warping-based

Fig. 3. Comparison of the genetic seam carving and warping. The resizing
quality depends on the type of the image.
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Table 1. Computational time of the two approaches

Approach orchid car islands

Genetic seam-carving 723.3s 563.9s 1369.5s
Warping-based 1.3s 1.1s 2.3s

According to Fig.3, warping-based approach produces smoother
results, while seam carving produces noticeable discontinuity, espe-
cially in images containing structural objects (eg. the car). This can
seriously affect the visual perception, which is caused by the discrete
nature of seam-carving methods. Moreover, as shown in Table 1,
the computational time for genetic seam carving is far longer than
warping, especially when specifying a large number of generations.
This is partly due to that the computational cost of warping meth-
ods is independent of the resizing dimensions while that of seam
carving is proportional to the number of seams [Wang et al. 2008].

4.2 Genetic Seam Carving
Number of generations. In terms of the genetic seam-carving ap-
proach, we looked at the effect of different numbers of generations
on the retargeted results (Fig. 4). When the number is small, the
head of the subject is shown to be severely distorted; However,
this deficiency is alleviated as the number of generations increases.
Moreover, as shown in Fig. 5, the loss (i.e. the average total energy
of the seam) converges to a lower level as the number of generations
increases, aligning with our common knowledge that larger itera-
tion steps generally give a better result. Considering the tradeoff
between accuracy and time, we determine the generations to be 30.

(a) Original image (b) Generations = 10

(c) Generations = 30 (d) Generations = 60

Fig. 4. Comparison of the results for different numbers of generations in
genetic seam carving. The resized image suffers less distortion as the number
of generations increases.

(a) Generations = 10 (b) Generations = 30 (c) Generations = 60

Fig. 5. Comparison of loss convergence for different numbers of generations.
The overall trend is roughly the same, but it is clear that candidate solutions
with lower energy is able to be found as the number of iterations increases
to approximates the global optimum.

4.3 Image Warping
The effect of 𝐽𝑙 , 𝐽𝑠 . For the warping-based method, we tried different
_ in Eq. (11) to investigate the effect of terms 𝐽𝑙 , 𝐽𝑠 on the results.
The output images under different _ are shown in Fig. 6.

(a) _ = 0 (b) _ = 10 (c) _ = 100

Fig. 6. Output images under different _.

It can be seen that the bending of the lines becomes severe at _ = 0,
which shows the effectiveness of the 𝐽𝑙 term in reducing the bending
of the lines. At _ = 10, the effects of 𝐽𝑠 and 𝐽𝑙 are more balanced and
a better result is obtained. At _ = 100, the effect of 𝐽𝑙 increases, and
it can be seen that without the 𝐽𝑠 term, all quads will be of the same
size, which is equivalent to scaling the image directly.

Initial guess. Although warping-based method usually gives results
with less distortions, we notice that seam carving results usually look
better when not considering distortions. The reason is that seam
carving based method does not change the size of the salient object,
which makes the salient object look larger in the output image.
In contrast, when using the warping based method, although the
deformation of the salient object is strongly limited and the aspect
ratio of the object is kept, the salient object is scaled according to
the corresponding quad size of the initial guess. As a result, the
scale of the salient object in the figure becomes relatively small, so
it does not look as good as the result of seam carving based method.
Due to lack of time, we simply scale the image as initial guess. For
improvement, we can try to adjust the initial guess, for example by
increasing the size of the higher energy quads and decreasing the
size of the lower energy quads. Or we can adjust 𝑠𝑓 according to the
energy of the corresponding quad face 𝑓 after 𝑠𝑓 ’s are calculated
using Eq. (8). It can be expected that a better initial guess will greatly
improve the results of warping based method, which can make the
salient objects look larger.
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4.4 Linear Programming
We used a python library called PuLP [Mitchell et al. 2011] to imple-
ment the method mentioned in subsection 3.3. However, we did not
get a good result before the final report. We will show the existing
results and discuss ways to improvement.

Binary variable. In the case of using binary matrix 𝑋 , the biggest
problem is the computation time. We tried GLPK [Makhorin 2008]
and MOSEK [ApS 2022] solvers and neither could solve the binary
linear programming problem in a reasonable time for large input
image. As a result, it can only be tested on very small images. An
example of resizing a 21× 32 size image to 21× 28 is shown in Fig. 7.

(a) Input (b) Energy map

(c) Selected pixels (red) (d) Output

Fig. 7. Result with binary linear programming method.

From the result in Fig. 7, the binary linear programming based
method gave the expected result. It can also be seen from the figure
that our consecutive constraint is not guaranteed to find the strict
seams, but the same effect as seams can be obtained to reduce the
distortion because the selected pixels are still connected.
The computation time of the result in Fig. 7 is 9.8 seconds (MOSEK
solver was used), however, when we try an image of size 32 × 49,
it takes a very long time to compute and cannot be finished in 30
minutes. The reason for this problem is most likely the limitation
of the algorithm itself used by the solver. If we had more time, we
might try other solvers or algorithms to see if we could improve the
computation time.

Continuous variable. Unlike the case of binary, when using contin-
uous variables, results can be obtained in a normal time even for
a larger images. However, when using constraints as the binary
method, we didn’t get the seam-like contiguous pixel selection as
expected.
In the example of Fig. 8, we used an image of size 300 × 460 and a
target size of 300 × 400. The computation time is 41.8 seconds.
As can be seen in Fig. 8, the selected pixels are not connected as
seam, which leads to poor output image.
The continuous linear programming method has a great potential
to obtain better results and faster computational speed than regular

(a) Input (b) Energy map

(c) Selected pixels (red) (d) Output

Fig. 8. Result with continuous linear programming method.

seam carving method. In future work, the following things can be
tried:

• Change the consecutive constraints
• Change the final pixel selection strategy: Instead of selecting

the largest ones directly, select pixels based on the position
of candidate pixels in the previous and next rows

to improve the performance.

5 CONCLUSION
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