Edge Detection
1 Feature detection
- Containing vast information
SO it’s important to determine
WHERE
- concentrate on a part and ignore others
- e.g. Object recognition: Ignore background
WHAT
- Feature can be located
- edge
- feature points
- Feature can be located
2 Edge detection
2.1 Feature
- Brightness (value) changes rapidly
- Differentiation (近傍ピクセルとの微分処理 )
- Important feature for object recognition
- Weak to noise(Because it is differentiation)
2.2 Kinds
2.3 Differentiation
Grandient
- Represents the direction and the speed of the change in brightness
Laplacian
边缘就是明暗剧烈变化的地方,所以我们可以通过一次微分的极值或二次微分的变曲点确定edge
3 edge operator
为了计算微分,我们通过edge operator——即一种filter来实现
3.1 一次微分
对于一个形同$[[I_{i,j+1}, I_{i+1,j+1}],[I_{i,j}, I_{i+1,j}]]$的2*2 window内的像素,我们可以将微分转换为
表现为filter即为
分别求出两个方向的edge后合并才能生成总的edge图
- Location more precise
- Weak to noise
- Low detection power
3.2 二次微分
3.3 算法
- Roberts
- Prewitt
- 先ほどのカーネルではノイズの影響が非常に強く出てしまうので、平滑化処理を加えた形
Sobel
- Location imprecise
- Robust to noise
- High detection power
LoG
- 用于平滑化
- 近似于DOG(倒不如说有时候用DOG会更方便所以可以近似)
- Canny
- 通过将一系列的检出算法合并的强力检出工具
- Blur image I with 2D Gaussian
- Find the edge‐normal direction at each pixel:
- Calculate the strength of the edge
- Find the maximal strength in the edge‐normal direction as the zero‐crossing in that direction (this step is called non‐maximum suppression)
- 改变参数$\sigma$可以提取各种各样不同的特征
- 通过将一系列的检出算法合并的强力检出工具
4. Corner detection
除了通过微分求出练成线的轮廓线,我们还可以通过求物体“角点”确认物体的位置
4.1 Susan
- window作为一个圆形对图片遍历,圈内与圆心相同亮度的部分称为USAN
- 若USAN的面积小于某个阈值即认为这个点是角点(就是在圆内占比极低)
想象一个比例为1:3的饼状统计图…那1/4是不是就是个正方形的角?
- USAN面积排行
- 圆内全部为相同亮度(即在一个物体内部时)面积最大
- 圆内只有一半左右为相同亮度(即边缘)面积次大
- 圆内只有小部分为相同亮度时(即角)面积最小
4.2 harris
Detect a point where the sum of square changes
of the image is largest when shifted slightly
- Points easily distinguishable from nearby points